

UNCLASSIFIED/UNLIMITED

Human-System Interaction Container

Célestin Sedogbo / Pascal Bisson / Olivier Grisvard / Thierry Poibeau
THALES Research & Technology France

Domaine de Corbeville
F-91404 Orsay Cedex

FRANCE

Email: celestin.sedogbo@thalesgroup.co / pascal.bisson@thalesgroup.co /
olivier.grisvard@thalesgroup.com / thierry.poibeau@thalesgroup.com

ABSTRACT

In this paper we present the concept of Human Interaction Container (HIC) which introduces an
important shift in the field of Human-Computer Interaction, moving from an application-centric to
user-centric perspective, through the adoption of a service-oriented view of application and user interface
capabilities. The HIC has been designed as to propose an interaction infrastructure offering the necessary
decoupling between application, interaction and presentation logics in order to enable intelligent adaptive
interaction and easy integration of new interaction modalities and appliances. The HIC approach is in the
process of implementation and validation on several THALES business cases such as Collaborative
Decision Making for Air Traffic Management.

1.0 INTRODUCTION

Due to the increasing diversity and complexity of software systems and means, the scope of
Human-Computer Interaction (HCI) extends far beyond the simple issue of providing human beings with
means to use a system. First, HCI must also enable the users to access the system anywhere, anytime and
anyhow, that is, more generally speaking, in any context of use. Second, it must provide the users with
support and assistance in order for them to perform their task or carry out their mission.

Nevertheless, most existing systems are not directed towards the satisfaction of the users’ needs, but rather
merely designed as to propose an interface to a set of application functions. Moreover, these functions are
often used through the prismatic view of the Graphical User Interface (GUI) and most GUIs do not take
into account some key contextual information such as the users’ task and behavior and do not exploit all
the possibilities offered by the appliances at hands. Therefore, the usability and utility of the
User Interface (UI), although being a key acceptance factor for nowadays systems, is often neglected to
the detriment of the usability of the whole system.

One of the main stumbling blocks to the design of user-centered systems is the difficulty to clearly identify
the interaction logic, that heavily depends on contextual information at several levels (application domain,
user tasks, user profiles and preferences, hardware environment and interaction history), as opposed to the
business application logic, which should be independent of any context of use, and the presentation logic,
which is necessarily specific to a given UI on a given terminal. A consequence of this lack of
proper separation between application, interaction and presentation services is that system designers
and developers have to face important costs in terms of system deployment, upgrade and maintenance.
Indeed, any evolution of the users’ interaction needs, for instance when the physical or logical context of
use changes, impacts both the applications and their interfaces. We argue that changing this situation in

RTO-MP-
Paper presented at the RTO SCI Symposium on “Critical Design Issues for the Human-Machine Interface”,
held in Prague, Czech Republic, 19-21 May 2003, and published in RTO-MP-112.
112 23 - 1

UNCLASSIFIED/UNLIMITED

mailto:celestin.sedogbo@thalesgroup.co
mailto:pascal.bisson@thalesgroup.co
mailto:olivier.grisvard@thalesgroup.com
mailto:thierry.poibeau@thalesgroup.com

Human-System Interaction Container

UNCLASSIFIED/UNLIMITED

order to open the way to the design of highly interactive systems requires a move from an application-
centric perspective, which is the characteristic of most existing systems, to a user-centric perspective.

Moreover, as today interaction means become more and more various and sophisticated, interaction
demands the integration of heterogeneous modalities, such as voice, gesture, graphics and animation,
as well as appliances, such as classical laptop and desktop workstations, mobile phones, Personal Digital
Assistants (PDA), PC tablets, etc. Therefore, HCI systems must undergo an important mutation,
moving from a one-to-one to a many-to-many scheme in terms of application to UI pairing, and become
able to dynamically adapt or even create the interface according to the users’ role and environment,
without changing the application.

2.0 SYSTEM OVERVIEW

In many systems, human-system interaction management processes exist both at the application level and
at the interface level. Moreover, these processes are often tightly buried into the application or the
interfaces in such an intricate manner that it becomes impossible to identify them as proper interaction
processes. This scattering originates from a lack of obvious separation between applications and interfaces
in existing systems. Even if such a separation is an appropriate solution to the interaction management
issue, see for instance multi-tier architectures, its implementation faces many problems. On one side,
a single application service can be used through several interaction means in potentially different contexts
of use, in which case the management of user-system interaction must be done at the interface level.
On the other side, a single interaction pattern can apply to several application services in which case the
interaction services are often somehow factorized at the application level. A consequence of this situation
is that any evolution of the users’ needs regarding their interaction with the system, for example when the
context of use changes, impacts both the applications and the interfaces. This leads to important
upgrading, maintaining and deployment costs. This paper presents a solution to this important issue in
user-system interaction management.

The solution described here is twofold. First we propose to relieve the designers and developers of
applications of the burden of dealing with the use of these applications in context, and thus enable them to
design generic applications which are easy to maintain, upgrade or reuse. Second, we propose as a parallel
to relieve the designers and developers of interfaces of the burden of dealing with the application
interaction, and thus enable them to design interfaces which are easy to extend and reuse. This is done
encapsulating the human operator and the context of use in a component which is exclusively in charge of
interaction management (cf. Arens & Hovy 1995) and defined as independent of application services
while enabling access to these services whatever the interaction means and the context of use may be.
This component implements a new concept in the field of system design called “Human-system
Interaction Container (HIC)”.

From the system architecture point of view, it consists in a business interaction middleware based on
interaction models and patterns as well as intelligent interaction services which implement the dialogue
between the interfaces and the application. For instance, in multi-tier architectures, the HIC can be
integrated as a new tier between the application server and the clients, as illustrated on Figure 1. In the
following sections we fully describe the drivers for the definition and design of the HIC, the HIC concept
itself, and the benefits of using the HIC. We show how it can be used in any system where the role of the
human operator is fundamental, that is in many domains such as defense, transports, communications,
services, domestic computing, etc.

23 - 2 RTO-MP-112

UNCLASSIFIED/UNLIMITED

Human-System Interaction Container

UNCLASSIFIED/UNLIMITED

Make
Interaction Services
Independent from

Terminal Specific Use

Three Tier Architectures Human Interaction Container

First Tier:
Client

Second Tier:
Business Interaction

Third Tier:
Application Server

Fourth Tier:
Database

First Tier:
Client

Third Tier:
Database

Second Tier:
Application Server

Make
Application Services
Independent from

Organization Specific Use

Devices

Services

Make
Interaction Services
Independent from

Terminal Specific Use

Three Tier Architectures Human Interaction Container

First Tier:
Client

Second Tier:
Business Interaction

Third Tier:
Application Server

Fourth Tier:
Database

First Tier:
Client

Third Tier:
Database

Second Tier:
Application Server

Make
Application Services
Independent from

Organization Specific Use

Devices

Services

Figure 1: From Three Tier to Four Tier Architectures.

3.0 THE HUMAN INTERACTION CONTAINER PARADIGM

A solution for providing users with wider access to existing systems and for enhancing user-friendliness of
existing interaction means is to design intelligent interaction systems that dynamically adapt to the
interaction environment and react appropriately in various contexts of use, without implying any
modification to the core application. In order to achieve this, we propose a new HCI architecture, offering
the necessary decoupling between application, interaction and presentation logics in order to implement
adaptive interaction. This architecture is based on the key concept of Human Interaction Container (HIC).

The HIC aims at encapsulating all software components dedicated to user-system interaction management
into a context-aware and context-sensitive container enacting as a mediator between the application
services and the presentation services. As such, this container is designed so to ease the logic separation,
between application, interaction and presentation, and handle all the interaction processes enabling an
application and its various user interfaces to communicate with each other. It offers application-
independent and interface-independent interaction services which support intelligent adaptive interaction.
These generic interaction services include dialogue processing, task and activity planning, user adaptation,
multi-modality input and output management, multimedia presentation generation and terminal adaptation.

The HIC also aims at providing application and UI designers with an open framework, independent from
platforms, networks and appliances, and enabling them to design at compile-time interaction facilities that
meet the operator and task requirements and use them at runtime without disrupting the realism of
interaction and the user performance. As such, the interaction container can be seen as an attempt to
exploit middleware facilities in order to satisfy the interaction demand at the application level. Therefore,
from a middleware perspective, the HIC constitutes a set of additional layers, the interaction layers, on top
of an existing system middleware, this assembly being called an interaction middleware. For multi-tier
architectures, the introduction of the HIC implies a migration from three tier architectures to four tier
architectures, with the HIC as a new tier, inserted between the application server tier and the client tier.

RTO-MP-112 23 - 3

UNCLASSIFIED/UNLIMITED

Human-System Interaction Container

UNCLASSIFIED/UNLIMITED

4.0 ARCHITECTURES FOR HUMAN-COMPUTER INTERACTION

Agent-based frameworks such as the Open Agent Architecture (Cheyer & Martin, 2001) or Ivy
(Chatty, 2002) may constitute a first step towards the implementation of the interaction infrastructure we
advocate for, as they can be used in order to encapsulate interaction components as agents into an
interaction platform independent of either application and interface. Some interaction platforms like the
iROS software/middleware system (Ponnekanti, Johanson, Kiciman & Fox 2003) prefigure the shift
towards the new kind of interaction architecture we propose. iROS uses an event heap (Johanson & Fox,
2002) as a coordination infrastructure for interactive workspaces. Based on a tuplespace model, it offers a
satisfactory infrastructure for coordinating and assembling distributed components, even if it lacks several
functionalities in terms of event management, especially regarding event life cycle and timestamp
management. Moreover, the ICrafter system, (Ponnekanti, Lee, Fox, Hanrahan & Winograd, 2001)
designed as a service framework for ubiquitous computing environments, is even closer to our proposal as
it is designed as to let users interact with workspace services using a variety of modalities and appliances.
The ICrafter architecture is built upon the event-based communication system of iROS and a context
memory component used for storing workspace context information.

5.0 THE HUMAN INTERACTION CONTAINER ARCHITECTURE

The architecture we have designed for the HIC results from our background acquired in the field of HCI.
It can be seen as a generalization of the approach we pursued in the past when addressing the problem of
(semi-)automatic production of speech-based interfaces. This approach consisted in setting-up an agent-
based HCI infrastructure where specialized agents devoted to interaction management were
communicating through a supervisor. The implementation was done using OAA. As can be seen on
Figure 2, the HIC internal flow processing architecture is also based on a community of agents dedicated
to the processing of interaction and implementing the various interaction services, as well as on a resource
management facility which ensures real-time access to interaction resources such as activity state,
dialogue history or UI contexts. This architecture is supported by the several other layers of the whole
interaction middleware which offer the various services required in order to implement high-level
interaction processes.

Dialog
Processor

Application 1
Communicator

Application 1

Function Calls
& Events

L
og

ic
al

 F
or

m
s

User
Adaptor

Task
Planner

Audio UI

PC UI

PDA UI

HIC

Mobile
Phone UI

UI Event
Broker

UI
Manager

UI Input
Parsers

UI Output
Adapters

Input
Interpreter

Application 2
Communicator

Application 2

Application N
Communicator

Application N…

…

Output
Generator

Multimodal
Generator

UI Planner

Multimodal
Interpreter

Pr
op

os
iti

on
al

 F
or

m
s

E
ve

nt
s

E
ve

nt
s

Tablet UI

Resources

Dialog
Processor

Application 1
Communicator

Application 1

Function Calls
& Events

L
og

ic
al

 F
or

m
s

User
Adaptor

Task
Planner

Audio UI

PC UI

PDA UI

HIC

Mobile
Phone UI

UI Event
Broker

UI
Manager

UI Input
Parsers

UI Output
Adapters

Input
Interpreter

Application 2
Communicator

Application 2

Application N
Communicator

Application N…

…

Output
Generator

Multimodal
Generator

UI Planner

Multimodal
Interpreter

Pr
op

os
iti

on
al

 F
or

m
s

E
ve

nt
s

E
ve

nt
s

Tablet UI

Resources

Figure 2: HIC Internal Flow Processing Architecture.

23 - 4 RTO-MP-112

UNCLASSIFIED/UNLIMITED

Human-System Interaction Container

UNCLASSIFIED/UNLIMITED

6.0 THE CONCEPT OF INTERACTION MIDDLEWARE

As stated above (cf. section 3), the HIC can be seen as an interaction middleware whose purpose is to ease
the development of HCI systems where people have to interact and possibly collaborate through a
heterogeneous set of devices ranging from mobile phones and PDAs to laptop and desktop PCs.
The interaction middleware is organized as a set of additional layers on top of a classical system
middleware. Such a middleware provides some core services such as object life cycle management, time
management and persistence1. In our approach, these cores services are completed by two additional
layers, one devoted to technical services and the other to interaction services. As shown on Figure 3,
technical services support both the application container and the interaction container while interaction
services provide the basis for the implementation of the HIC.

Interaction Code

Application Code

Application and
Business Logic

Interaction Services (Generic)

Technical Services

Declaration and Retrieval

Appliances User Events

Data Transformation

API Translation

Core Services
XML

Events Time

Platform Administration & Management

Life Cycle

Persistence

Naming and Repository

InteractionUser Task

Application Container

Human Interaction Container

Interaction
Logic

Interaction Code

Application Code

Application and
Business Logic

Interaction Services (Generic)

Technical Services

Declaration and Retrieval

Appliances User Events

Data Transformation

API Translation

Core Services
XML

Events Time

Platform Administration & Management

Life Cycle

Persistence

Naming and Repository

InteractionUser Task

Application Container

Human Interaction Container

Interaction
Logic

Figure 3: Architecture of an Interaction Middleware.

Technical services are not directly implementing interaction management. They are primary specified and
developed in order to be called and used by the upper layer as tools for interaction service implementation.
The declaration and retrieval service is a facility for the management of the other services (addition,
retrieval, removal, etc.). The API translation service translates an application API into a set of application
services accessible through the interaction middleware in order to ensure compatibility with existing
applications. The data transformation service offers tools for converting some data from a given format
into another. The user events service manages user events at different levels of granularity, ranging from
elementary events such as mouse moves or key strokes to complex ones reflecting the semantics of user
actions such as selection in a list or connection to a device. Finally, the appliances service stores the
characteristics of the various appliances which are used by some services of the upper layer in order for
them to account for appliance variation and react accordingly.

Interaction services are the basis for the implementation of the intelligent interaction capabilities shown on
Figure 2 above. These services are concerned with the management of the user task descriptions, the
acquisition and update of the user activity state descriptions at runtime, the management of user class and
user specific profiles and preferences as well as the management of the interaction (or dialogue) state and
history.

1 As core services are common to most existing system middlewares, we will not describe them in details.

RTO-MP-112 23 - 5

UNCLASSIFIED/UNLIMITED

Human-System Interaction Container

23 - 6 RTO-MP-112

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

7.0 IMPLEMENTATION AND APPLICATIONS
The HIC concept is under a process of implementation by way of an integrated approach that mixes
technological development together with operational application. Our first implementation of the HIC
technology relies on the iROS middleware (cf. section 4) as a good candidate to experiment our layered
and service oriented approach to interaction middlewares. We thus use the event heap to set-up a core
service layer that can be seen of as a message-oriented system middleware. A few of the technical services
of the second layer are basically the ones proposed by ICrafter but we develop most of these services
ourselves, especially in order to support service classification and service hierarchy management.
This work is now under completion. Finally, the implementation of the interaction services of the third
level as well as the interaction processes of the HIC core will be done on the basis of a model-based
approach which enables derivation of interaction model from application model and user task model at-
compile-time and management of business interaction patterns and rules at runtime.

While the HIC may address a broader range of applications, its implementation is mainly driven by a set
of THALES business cases in which it is meant to support tasks such as Control and Command,
Collaborative Decision-Making or Team Situation Awareness, in domains such as Air Traffic
Management or Naval Combat Management. It must be noticed that the deployment of the resulting
technology, while being strongly dependent on the demand in terms of interaction services, also leads us
to design specific architectural patterns per domain and business.

8.0 CONCLUSION
Through the adoption of a user-centric approach to interaction management, we argue that the HIC
prefigures the future of HCI systems where people will have to interact and collaborate through a
heterogeneous set of modalities and appliances. In terms of software development and management, the
HIC as an interaction middleware offers the HCI designers an open framework enabling them to design an
interaction system that meets business requirements such as enhanced user support and easy integration of
new devices, without implying important changes to the application, which is a major requirement of
THALES system designers and developers.

9.0 REFERENCES
Arens Y., & Hovy E. (1995) The Design of a Model-Based Multimedia Interaction Manager. Artificial
Intelligence Review, 9(2-3).

Chatty, S. (2002). The Ivy Software Bus – A White Oaper. CENA Technical Note NT02-816, from
http://www.tls.cena.fr/products/ivy/.

Cheyer, A., & Martin, D. (2001). The Open Agent Architecture. Journal of Autonomous Agents and
Multi-Agent Systems, 4 (1), 143-148.

Johanson, B., & Fox, A. (2002). The Event Heap: A Coordination Infrastructure for Interactive
Workspaces. Proceedings of the 4th IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA 2002).

Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P., & Winograd, T. (2001). ICrafter: A Service Framework
for Ubiquitous Computing Environments, Proceedings of the Ubiquitous Computing Conference
(UBICOMP 2001).

Ponnekanti, S.R., Johanson, B., Kiciman, E., & Fox A. (2003). Portability, Extensibility and Robustness in
iROS. Proceedings of the IEEE International Conference on Pervasive Computing and Communications
(Percom 2003).

http://www.mit.edu/sorokin/women/lrs.html
http://www.mit.edu/sorokin/women/lrs.html

	Human-System Interaction Container
	ABSTRACT
	1.0 INTRODUCTION
	2.0 SYSTEM OVERVIEW
	3.0 THE HUMAN INTERACTION CONTAINER PARADIGM
	4.0 ARCHITECTURES FOR HUMAN-COMPUTER INTERACTION
	5.0 THE HUMAN INTERACTION CONTAINER ARCHITECTURE
	6.0 THE CONCEPT OF INTERACTION MIDDLEWARE
	7.0 IMPLEMENTATION AND APPLICATIONS
	8.0 CONCLUSION
	9.0 REFERENCES

